THE THERMODYNAMIC PROPERTIES OF SOLID AND FLUID HELIUM-3 AND HELIUM-4 ABOVE 3 °K AT HIGH DENSITIES

By J. S. DUGDALE AND J. P. FRANCK†

Division of Pure Physics, National Research Council, Ottawa, Canada

(Communicated by G. Herzberg, F.R.S.—Received 14 October 1963)

CONTENTS

1.	Introduction	PAGE 1	3.4. The fluid range	PAGI
2.	EXPERIMENTAL 2-1. The calorimeter 2-2. Temperature scale	3 3 5	3.6. Calculation of related thermodynamic properties	16
	2.3. Gas handling and operation2.4. Determination of molar volume and mass of sample	6 7	 4. Discussion 4·1. The specific heat of solid helium 4·2. Energy relations in solid helium at 	21 21
3.	EXPERIMENTAL RESULTS 3.1. Specific heat of solid helium	9	0 °K 4·3. The fluid helium isotopes	25 27
	 3.2. The melting range 3.3. The high-temperature phase transformation in solid ⁴He and ³He 	11	Conglusions	27 28

Measurements have been made of the specific heat at constant volume of solid ³He from 3 °K up to the melting point at a number of different densities corresponding to pressures up to 2000 atm. The measurements have been extended through the melting region at constant volume up to 29 °K in the fluid phase. For comparison similar measurements have been made on ⁴He at four different densities.

By combining these data with the p-V-T data of Mills & Grilly (1955) and Grilly & Mills (1959), the complete thermodynamic properties of the solids have been derived in the relevant pressure and temperature range. The results can be understood semi-quantitatively in terms of the zero-point energy of the solids and a quasi-harmonic model of the lattice vibrations. A brief discussion of the specific heat of the fluid phase is also given.

1. Introduction

Simon (1934) first drew attention to the importance of zero-point energy in interpreting the properties of solid and liquid helium. If helium behaved classically, it would exist as a solid in equilibrium with its vapour at the lowest temperatures with a molar volume of about 10 cm³ and a latent heat of sublimation of about 150 cal/mole; all this can be readily deduced from the properties of the gas phase at higher temperatures. In fact experiment shows that solid ⁴He is not in equilibrium with the vapour phase at any temperature and that at the lowest temperatures it exists in equilibrium with the liquid under a pressure of about 25 atm. Its molar volume under these conditions is more than 20 cm³ and its internal energy

† Now at the Department of Physics, University of Alberta, Edmonton, Canada.